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The previously developed formalism for the calculation of asymptotic properties 
of multistate random walks is used to study random walks on several 
inhomogeneous periodic lattices, where the periodically repeated unit cell con- 
tains a number of inequivalent sites, as well as on lattices with a random dis- 
tribution of inequivalent sites. We concentrate on the question whether the ran- 
dom walk properties depend on the spatial arrangement of the sites in the unit 
cell, or only on the number density of the different types of sites. Specifically we 
consider lattices with periodic and random arrangements of columns and lat- 
tices with periodic and random arrangements of anisotropic scatterers. 

KEY WORDS:  Multistate random walks; inhomogeneous periodic and ran- 
dom lattices; random jump rates. 

1. I N T R O D U C T I O N  

In a previous paper, hereafter referred to as I, (1~ we have investigated the 
asymptotic behavior of various random walk properties for multistate ran- 
dom walks on inhomogeneous periodic lattices. These random walks are 
characterized by the fact that the walker can be in a number of internal 
states. Our main interest has been the case of nonequivalent configurational 
internal states (i.e., sites) within a periodically repeated unit cell. In I 
expressions for the asymptotic mean and (co)variance of the displacement 
of the walk have been derived, both in discrete and continuous time. The 
results for the (co)variances simplify considerably for walks which are 
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locally unbiased in every direction, i.e., walks in which the average single- 
step displacements from every site in every space direction are zero. 3 In 
addition, the long-time behavior of the probability of return to the origin 
and the expected number of distinct sites visited has been obtained. The 
time dependence of these quantities for inhomogeneous periodic lattices is 
the same as for perfect periodic lattices and only the coefficients are 
modified. 

In this paper we consider in detail the question which was raised in the 
introduction of I, namely, the condition(s) under which the asymptotic 
random walk properties do, or do not, depend on the spatial arrangement 
of the sites within a unit cell. 4 In view of the results of I, we limit ourselves 
to a restricted number of properties (mainly the mean square dis- 
placements) since other properties, such as the probability of return to the 
origin or the expected number of distinct sites visited, are determined by 
the diffusion coefficients associated with the mean square displacements. To 
gain some insight into the problem, we study here a number of represen- 
tative examples. 

In Section 2, we discuss the case of sparsely periodic two-dimensional 
lattices and its extension to the case of a random distribution of columns. 
Also, a modified sparsely periodic lattice, the "brick lattice," is studied, 
which is obtained from a sparsely periodic lattice by shifting some of the 
vertical bonds a fixed number of sites along the horizontal direction. For 
the latter case we show that the random walk properties are no longer 
independent of the detailed spatial arrangement of the shifted bonds, in 
contrast to the original sparsely periodic lattice, where only the density of 
vertical columns is relevant. In Section 3 we consider the problem of lat- 
tices with anisotropic scatterers, both for periodic and random 
arrangements. Some analytical results for the case of low or high density of 
scatterers are presented. Section 4 contains a summary and discussion of 
the results obtained in this paper and a comparison with earlier results in 
the literature. 

2. SPARSELY PERIODIC LATTICES 

2.1. Periodic Distr ibut ion of  Columns 

In Section 2.2 of I we discussed an example of a so-called sparsely 
periodic lattice in two dimensions. As can be seen from Fig. 1, a number of 
vertical columns is deleted in a periodic way so that the walker can only 
step in the y direction on a subset of sites. 

s That  is, the walk has the Martingale property. ~2) 
4 We will be concerned here only with random walks having a zero drift velocity in every 

space direction. 
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Fig. 1. Sparsely periodic lattice with horizontal periodicity k; step probabilities are as 
indicated. 

Various random walk properties on this inhomogeneous periodic lat- 
tice, i.e., mean, variances, occupation probabilities, expected number of dis- 
tinct sites visited, probability of return to the origin, were worked out in 
the long-time limit in previous papers. (1"3"s~ One of us postulated in an 
earlier paper (3) that these results should be independent of the arrangement 
of the vertical columns for a fixed number density of columns. This was 
later confirmed in Ref. 5 and rigorously proved to be true in Refs. 6-8. 

We now want to demonstrate that the methodology developed by us 
in our preceding paper ILl yields, in a very simple manner, the same results, 
while at the same time giving more insight into the underlying reasons for 
the lack of dependence of random walk properties on the detailed spatial 
arrangement of columns. 

As a first step in this demonstration, we consider a generalization of 
the lattice in Fig. 1, where the unit cell now contains k columns which all 
differ from each other, i.e., from a site on the flth column (fl = 1, 2 ..... k) the 
walker jumps with a probability p~ in the positive or negative x direction, 
and with probability q~ = �89 - pC in the positive or negative y direction. The 
unit cell or, to be more precise, the irreducible lattice fragment (ILF), for 
this lattice is shown in Fig. 2. To determine the mean square displacements, 

tq, o, jq:l 
1 

Fig. 2, 

L% 
= �9 Pk l qk 

qk 

k 

ILF for a periodic lattice with column-dependent step probabilities; horizontal 
periodicity k. 
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we first construct the matrix T, which describes the transitions between the 
internal states, and calculate ~1) its right eigenvector rc corresponding to the 
eigenvalue 2o = 1. We find 

[2q~ 

T =  

P2 Pk .. 
Pl 2q2 "'. 

.. 
P2 

�9 . " . .  P k  

Pl P~- ~ 2qk] 

P;  

Ps 1 (2.1) 

where the constant c is determined by normalization: 

c =  pF l (2.2) 
/~ 1 

One can easily check that the vector Ir in (2.1) is indeed the right eigenvec- 
tor of T corresponding to the eigenvalue ;to = 1 (note that 2p~ + 2q~ = 1, 
all fl). The simple form of the equilibrium occupation probabilities {~r~} is 
due to the validity of detailed balance for this model, i.e., p1~1 = 
pzg2 = " ' "  = pkI~k, which obviously does not involve the transitions in the 
y direction, since these constitute jumps from an internal state to itself. 

To find the diffusion coefficients, we first calculate the one-step varian- 
ces from each state ft. These are easily found to be 

(x2)~ = 2p~, (y2)~  = 2q~, ( x y ) ~ =  ( y x ) ~ = O  (2.3) 

where we have set the lattice constants equal to unity�9 Then by applying 
Eq. (2�9149 of I (the walk is locally unbiased), we have 

D~x = �89 ~ (x  2 )p rc~ -- ck (2.4a) 

k 

Dyp=�89 (YZ)~xB=c Z q~=�89 (2.4b) 

D~y = Dy x = 0 (2.4c) 

in agreement with Corollary 1 of Ref. 6, and 5 

(xZ(n) ) D~x k 
(n ~ oo) (2.5a) 

(y2(n)) Dyy E~ (qB/Pp) 

5 The relevance of these results  for Shuler 's  bond  e n u m e r a t i o n  m e t h o d  ~3) is discussed in Ref. 9. 
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For the sparsely periodic lattice of Fig. 1, ql = P l  = �88 and q2 = ""  = qk = 0, 
so that 

(x2(n))  ~ k  (n ~ m) (2.5b) 
( y2(n) ) 

as already found in I. It can readily be seen from (2.4) and (2.5a) that the 
variances and the diffusion coefficients are independent of the spatial 
arrangement of the columns. If a waiting time density with finite mean 
waiting time is assigned to each of the sites in Fig. 2, the ratio of 
asymptotic mean square displacements in the x and y direction is still given 
by the right-hand side of (2.5), as can be deduced from Eq. (3.2.9a) of I. 

The probability of return to the origin after n steps, denoted now by 
Rn(k) to indicate the dependence on the number k of columns per unit cell, 
averaged over initial states, is given by Eq. (2.3.11) of I as 

Rn(k ) nZ~ k_l(de t 2D) l/2(det A)(2rcn) -I  (2.6) 

Here D is the diffusion matrix and A has matrix elements 

A;j=ai 'e j  (2.7) 

where {a;} is the set of fundamental translation vectors which define the 
unit cell and {e;) is the set of basis vectors which is used to define the coor- 
dinate system. (1~ Actually (2.6) should be multiplied by a factor 
{ 1 + ( - ) "  }, but since we are concerned here with ratios for the same value 
of n, this factor is unimportant. From (2.6) we find for the ILF of Fig. 2, 

h(k) R . ( k ) . z ~  k_ ~ Vdet 2D(k)]-~/2 detA(k)  
-R~(1)  kdet 2--D~i] det A(1) 

(2.8) 

The elements of the matrix A(k), as defined in (2.7), are 

A:~x(k ) = k, Ayy(k) = 1, Axy = Apx = 0 

so that 

det A(k) = k (2.9) 

Since the diffusion matrix is diagonal, we finally obtain 

[Dxx(k ) Dyy(k)] -1/2 
(2.1o) 
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This result confirms the assumption made in Ref. 3 that the probability of 
return to the origin is inversely proportional to the area 
[(x2(n)><y2(n)>] 1/2 covered by the random walker. However, as can be 
seen from (2.8), the simple result (2.10) will not necessarily hold for other 
types of lattices, since the diffusion matrix is not necessarily diagonal, nor 
is the factor det A(k)/kdet A(1) always equal to unity. A similar remark 
applies to the expected number of distinct sites visited (summed over final 
and averaged over initial internal states), which is in this case proportional 
to the area [<xZ(n))(y2(n))] 1/2, as assumed in Eq. (15) of Ref. 3. 
However, in view of Eq. (2.4.10b) of I which involves the complete 
generating function G~(0, 1) and not merely the diffusion matrix, an 
analogous result in three dimensions is not to be expected, contrary to the 
remarks of Ref. 3, Eq. (51). 

We note that the asymptotic results for the probability of return to the 
origin and the expected number of distinct sites visited are independent of 
the arrangement of columns since they are functions only of the diffusion 
coefficients for which the arrangement has already been shown to be 
irrelevant. 

2.2. Random Distribution of Columns 

We now turn our attention to the explicit calculation of the diffusion 
coefficients for lattices of the type shown in Fig. 2 with a random dis- 
tribution of columns. Let us consider a two-dimensional lattice with two 
types of columns, denoted by 1 and 2. For columns of type 1, the stepping 
probabilities in the x and y direction are Pl and q~, respectively, and P2, q2 
for columns of type 2. 

The basic approach is as follows. We start by assuming a random dis- 
tribution of the columns in a unit cell with k sites, which is then 
periodically repeated as before. The diffusion coefficients, which can be 
calculated for every realization of this random distribution by using 
Eq. (2.4) above, are now random variables. We will show that in the limit 
of an infinite number of columns per unit cell (i.e., k --* oo), the diffusion 
coefficients approach a nonrandom limit, which is identical for almost all 
realizations of the random distribution of columns. 

Let us assume that we have an inhomogeneous periodic lattice of k 
sites per unit cell as in Fig. 2, where now the {p~} and {q~} are random, 
i.e., for any /~ = t, 2,..., k, pp = Pl,  q~ = ql with probability v and p~ = P2, 
q~ = q2 with probability 1 -  v, independent of the values of the other p's 
and q's (i.e., no correlations between columns). In an inhomogeneous 
periodic lattice with a fixed number sl of columns of type 1 and a fixed 
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number k - S l  of columns of type 2 in each unit cell, the diffusion coef- 
ficients have the form 

1 
b y ( s , )  = ~ - Dx(Sl  ) (2.1 lb) 

For the present case of a random distribution of columns in the unit cells 
of an inhomogeneous periodic lattice, the formulas (2.11) still hold with the 
understanding that the number s~ is now a random variable, taking values 
0, 1,..., k, and distributed according to a binomial distribution. We now let 
the size of the unit cell increase without bound by taking the limit k --+ or 
with v fixed. By the Strong law of large numbers the fraction s~/k of 
columns of type 1 then approaches the (nonrandom) limit v for almost all 
realizations of the random distribution of columns. Thus with probability 
1, 

D~ ~oo [ v p l , + ( l _ v ) p 2 1 ] _ l  (2.12) 

Dy k~o~ �89 1-v)pz-~] I (2.13) 

Comparing (2.11) and (2.12), we see that the diffusion coefficients for the 
random distribution of columns are identical to those for a periodic 
arrangement of columns, provided that the fractions silk and s2/k for the 
periodic case are equal to the probabilities v and ( 1 -  v) for the random 
case, where we take v to be a rational number. 

The only question which remains at this point is whether the above 
procedure of starting with a periodic random arrangement with a sub- 
sequent passage to the limit of an infinite period, i.e., k --+ oe, leads to the 
correct result for the infinite random system. As has been shown by den 
Hollander,(l~ the answer is "yes" for almost all realizations of the random 
distribution of columns; in addition, he found that the relations between 
the diffusion coefficients and the probability of return to the origin or the 
expected number of distinct sites visited, as established for periodic 
inhomogeneous lattices in I, are still valid for the lattice with a random 
arrangement of columns. 

A result of a more general nature was recently derived by 
VigfussonJ m He showed that under fairly mild conditions the expectation 
value E{D (m)} (where the expectation is over the random distribution of 
inequivalent sites or jump rates) of the diffusion constant O (m) for a one- 
dimensional chain with periodicity m approaches the expectation value 
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E{D (~ of the infinite chain as m ~ oe. A similar proof can be given for 
higher dimensional lattices. (12) In the examples of this section and of Sec- 
tion 3, we have the much stronger result that almost all realizations of the 
infinite random system have the same diffusion coefficients, but this is not 
always the case. (13'15'2s'26) 

2.3. Modified Sparsely Periodic Lattice (The Brick Lattice) 

It is of some interest to discuss what happens if, instead of deleting 
whole columns from a square lattice, one deletes individual vertical bonds, 
thus obtaining a type of percolation lattice. As a first step, we consider here 
the following rudimentary percolation lattice: start from a sparsely periodic 
lattice (horizontal periodicity k) and move the vertical bonds ( m - 1 )  sites 
to the right in every other horizontal strip, with 1 ~< m ~< k +  1 (Fig. 3). In 
this way, the density of vertical bonds is unaltered and the question is 
whether the random walk properties on this lattice, which we denote as the 
,,brick lattice," are affected by this shift. 

The random walk is defined by the following single-step transition 
probabilities: The walker jumps with probability 1/2 to each of his two 
neighbors from a site without vertical bonds, and with probability 1/3 to 
each of his three neighbors from a site with a vertical bond. It can easily be 

k + l .  " " "  

I " :J :  ~:1 =: - - k ~ m -  - - 2 k  

- ' "   iiii i i i  I --i :~11211111121 
Iii i i i i  

I t . . . . .  i i i l l  
1 1 . . . . .  

Fig. 3. Brick lattice, horizontal periodicity k x = k  , vertical periodicity ky=2.  Step 
probabi l i t i es  are as indicated.  
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shown that under these assumptions the occupation probabilities of the 2k 
sites in the unit cell are (see Ref. 9) 

~(2) ~ _  2/c' (2.14a) 

for sites with two bonds connected to it, and 

~z~3) = 3/c' (2.14b) 

for sites with three bonds, where from normalization 

c' = (4)(3) + (2k - 4)2 = 4(k + 1) (2.14c) 

Since the walk is locally unbiased in the horizontal direction, i.e., 
( x ) / 3 = 0  for all/~, we immediately have from Eq. (2.2.31) of I 

2Dx=~(x2)~z~=(4) ~ ~ +(2k 4)(1 

4k k 
c' k +  1 (2.15) 

Hence the diffusion coefficient in the horizontal direction is the same as for 
the original sparsely periodic lattice, and independent of m. 

The diffusion coefficient D~, in the vertical direction is more difficult to 
obtain owing to the fact that the walk is not locally unbiased in the vertical 
direction. A formula has been derived in I [Eq. (2.2.29b)] for this case, 
which involves all the eigenvalues and eigenvectors of the 2k-dimensional 
transition matrix, but these are hard to calculate. Instead we use the 
following stratagem to circumvent this problem. The diffusion matrix D 
can be expressed as [-Eq. (2.2.24) of I with mk= 0] 

2D = ATSA (2.16) 

where the matrix A (with transpose A r) is defined in (2.7) and the matrix S 
depends only on the connectivity of the lattice [see Eq. (2.2.13b) of I]. We 
now deform the lattice of Fig. 3 in such a way as to give rise to a locally 
unbiased random walk while preserving the original connectivity (Fig. 4). 

For the deformed lattice we have 

2D' = A'rSA ' (2.17) 

where S is the same as in (2.16) and all primed quantities pertain to the 
deformed lattice. Hence from (2.16) and (2.17) 

2D = A r ( A  'r) I(2D')(A')-I  A (2.18) 

822/41/3-4-16 
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+1" ~ 1 7 6  

Fig. 4. Deformed lattice corresponding to Fig. 3. The ILF consists of the 2k labeled sites. 

Since the deformed lattice is by construction locally unbiased in all direc- 
tions, we can apply Eq. (2.2.31) of I, involving only the eigenvector n' of 
the transition matrix "[" corresponding to the deformed lattice, to calculate 
D'. In this way we can obtain D as well, since the matrices A and A' are 
determined completely by the geometry of the lattice. The details are 
presented in Appendix A. The result is 

k 
2Dx-k+ 1 (2.19) 

as we already found, and 

1 1 
2Dy (2.20a) 

k + 1 7 

where 

7=k- l [km-  (m-  1) 2 ] (2.20b) 

We thus see that Dy does depend on m, i.e., the spatial arrangement of 
the vertical bonds. The sparsely periodic case is recovered by putting m = 1 
or k + l  for which 7 = 1 .  In Fig. 5 we plot the ratio Dx/D,=k7 as a 
function of m. This ratio attains its maximum when m = k/2 + 1 (if k is 
even), corresponding to the case of largest anisotropy in the diffusion. 



Asymptotic Properties of Mult istate Random Walks. II 591 

k ( l + ' / , k )  

/ o~ "o 
/ \ 

/ N 

/ o, 
/ \ 

/ \ 
\ 

\ 

I I I ] I I 

1 ,I-1 
m 

/ 
/ 

/ 
/ 

/ 

k 

't 
\ 
\ 
\ 
\ 
\ 
1, 

Fig. 5. Ratio of the diffusion coefficients in the horizontal and vertical direction as a function 
of the position m of shifted bonds. 

The first conclusion which can be drawn is that it makes a con- 
siderable difference whether one shifts vertical columns as a whole, as in 
the previous sections, or individual vertical bonds, as in the brick lattice. 
Secondly, our initial question whether the asymptotic random walk proper- 
ties do or do not depend on the arrangement of the bonds has to be refined 
somewhat. It turns out, as in the example just discussed, that some of these 
properties may depend upon arrangement while others do not. In the case 
of the brick lattice, Dy does depend on the arrangement of shifted bonds, 
but D~ does not. The occupation probabilities (2.14) are independent of 
arrangement. From the results of Ref. 9 it follows that the average numbers 
@x(n)) and ~ny(n)) of steps in the x and y direction after n steps are for 
the case of the brick lattice given asymptotically by 

{n~(n))~ n, (ny(n))~ ~ n (n--, o9) (2.21) 

a result which is also independent of arrangement. Since the walk is locally 
unbiased in the x direction, the horizontal variance ~ x Z ( n ) )  is directly 
proportional to {nx(n)), which immediately leads to (2.15). However, 
since the walk is not locally unbiased in the y direction, the lack of depen- 
dence of {ny(n)) on arrangement of shifted bonds does not imply a similar 
independence for Dy. We have not yet addressed the more difficult problem 
of obtaining Dy for brick lattices with randomly distributed vertical bonds. 
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3. LATTICES W I T H  A N I S O T R O P I C  SCATTERERS 

3.1. Periodic Ar rangements  of Scat terers 

In this section we consider lattices with anisotropic scatterers, a topic 
already discussed by Shuler and Mohanty for a special case. (4~ The main 
difference from the sparsely periodic lattices of Section 2.1 turns out to be 
that the arrangement of the scatterers in the unit cell now matters, i.e., 
inhomogeneous periodic lattices with the same density of scatterers but dif- 
ferent arrangement may have different diffusion coeff• This will be 
illustrated by a number of examples. In the subsequent sections, we discuss 
the case of a random arrangement of scatterers. This is much more difficult 
to deal with than the random arrangement of columns discussed in Sec- 
tion 2.2, and we limit ourselves, for now, to some general qualitative 
remarks as well as some low-density results. 

Let us start by considering a two-dimensional lattice with four sites 
per unit cell, two of which are scatterers. One of the possible lattices is 
given in Fig. 6. The transition probabilities from a scatterer are a in the 
horizontal and b in the vertical directions, where 2a + 2b = 1. The ILF for 
this lattice is given in Fig. 7a. In Figs. 7b and 7c, the other two possible 
ILF's with four sites and two scatterers are drawn. The latter two ILF's 
transform into each other by a simultaneous interchange x ~ y, a ~  b. This 
manifests itself in the results (3.2) for the occupation probabilities. One of 
the scatterers can always be placed at the origin without loss of generality, 
and therefore three possibilities for the second scatterer remain. 

�88 

�88 
�88 �88 

Fig. 6. Two-dimensional anisotropic lattice, x: scattering sites. The jump probabilities are 
indicated. 
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2k 
1 

Fig. 7. 

(a) {b) (c) 

2 1 1 1 2 

ILF's with four sites and two scatterers in three different arrangements, (a)-(c). Jump 
probabilities for crosses and circles are as in Fig. 6. 

The diffusion coefficients in all three cases can be written as ~L/ 

Dx =- �89 ~ (x2)~ ~ = �89 + �89 - ~rl)] (3.1a) 

D y = � 8 9  x (3.1b) 

where ~1 is the occupation probability of site 1 (the scatterer) in Figs. 7a-c, 
and rc 2 = 1 - nl,  that of site 2 (the regular site). Note that we have reduced 
the ILF of four sites to an ILF of two sites in all three cases, and used that 
(x2)~=2a, (x2)2 =1. So we need only to determine the occupation 
probability 7~ 1 of the scatterer in all three cases, i.e., calculate the eigenvec- 
tor r~ of the matrix T which describes the transitions between the internal 
states. For the three cases of Fig. 7, we find the following: 

Fig. 7a, T = ( 0  ~), n = ~ ( 1 )  (3.2a) 

1 ( ; )  , 2b, 
Fig. 7b, \2b �89 ' ~ - l + 4 b  

 32c, Fig. 7c, - - \ 2 a  �89 ' ~ - l + 4 a  4a 

We see that the occupation probability ~1 is different for all three lattices of 
Fig. 7. Similar results can be shown to hold for arrangements of two scat- 
terers in a unit cell of 3 x 3 sites, etc. Thus the diffusion coefficients and the 
other random walk properties discussed in I differ for different periodic 
arrangements of scatterers with identical density. It is evident that this 
remark is general and not just limited to the specific examples discussed 
above. It is therefore not possible to apply the simple method of Section 2.2 
to the case of the random distribution of anisotropic scatterers at a-fixed 
average density. Some low-density results are presented in Section 3.3.- 

The consequences of these results for the validity of the modified bond 
enumeration method of Shuler and Mohanty (4~ are discussed in Ref. 9. �9 
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3.2. Random Ar rangement  of Scat terers 

The results presented above raise the following important question. It 
is a well-known experimental observation, and a necessary condition for 
the existence of modern technology based on solid state materials, that 
macroscopic properties, such as transport coefficients, for solids with 
defects (scatterers, impurities, holes, etc.) at a given density are charac- 
teristic properties of the material and do not depend upon where or how 
the material was prepared. For  instance, amorphous semiconductors of a 
given composition with, say, 10% recombination centers randomly dis- 
tributed in the material, will yield the same results for the photocurrent in 
different laboratories, even though the material may have been prepared by 
different techniques. This appears to be in conflict with the results presen- 
ted above for periodic arrangements of scatterers. 

For  anisotropic scatterers, the answer to this apparent dichotomy can 
be inferred from the results of Lawler (14) on the convergence of a random 
walk in a random environment of anisotropic scatterers. Before discussing 
his result, we first note that the diffusion coefficient in the x direction in 
any of the above examples of a periodic arrangement of anisotropic scat- 
terers with arbitrary density p, 0 < p < 1, per unit cell, can be written (1) 

Dx=�89189 (3.3) 

where m denotes the total number of sites in the unit cell and where 
{x2)  * = 2a, {x 2) -2.- • The occupation probabilities ~z*(m, p) and ~(m, p) 
are given by 

~ * ( m , p ) = Z * ~  ~, r c ( m , p ) = l - Z * ~  ~ (3.4) 
p p 

where the asterisk indicates a summation over all the scattering sites in the 
unit cell. In other words, ~*(m,p) and rc(m,p) are the asymptotic 
probabilities that the walker is, respectively, on a scattering or a regular 
site. 

The work of Lawter shows that if one considers a random walk on a 
lattice with a stationary and ergodic distribution/~ of anisotropic scatterers, 
the occupation probabilities of the scatterers and regular sites are, for 
almost all realizations of#, equal to constants ~* and 1 -r~*, respectively, 
where ~* depends on #. A special case of a stationary ergodic distribution 
is the random distribution #(m, where the probability that a site is a scat- 
terer or regular site is given by v and 1 - v, respectively, independent of the 
other sites. 

From Lawler's result and our findings in Section 3.1, we draw two 
conclusions: 
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(i) Different realizations of a random distribution #/R) of scatterers 
with identical density v of scatterers give rise to identical diffusion coef- 
ficients with the exception of a set of measure zero. 

(ii) The periodic arrangements with density v of scatterers, being 
possible realizations of the random distribution #(m, belong to this set of 
measure zero. 6 

There is thus no contradiction between the experimental observation 
of the well-characterized macroscopic (i.e., averaged) properties of defect 
materials and the theoretical results on inhomogeneous periodic lattices 
with anisotropic scatterers as given above. Unless very special techniques 
are employed for the specific purpose of creating a material with periodic 
arrangements of "defects," the preparation of such material will lead, for 
almost all realizations, to a random arrangement of defects. 

A slightly weaker form of Lawler's result has recently been proven for 
the case where some of the transition probabilities are zero, i.e., the per- 
colation problem, where it has been shown that the diffusion coefficient for 
a random walk starting on the infinite cluster, i.e., above the percolation 
threshold, is independent (in probability) of the configuration of the 
broken bonds/15) A similar result is to be expected in the case of the brick 
lattice of Section 2.3, when the vertical bonds are shifted randomly in the 
horizontal direction. 

Returning to the lattice with a random distribution of anisotropic scat- 
terers, we see that in order to calculate the diffusion coefficients we need to 
calculate the occupation probability s of scatterers. This is a very dif- 
ficult problem for arbitrary v, 0 ~< v ~< 1. We study some limiting cases in the 
next section. 

3.3. Low-Density Results 

In order to calculate the occupation probability ~*(v) of the scatterers 
in the case of a random distribution of scatterers, we assume that v is very 
close to 0 or 1. Then we can use perturbation theory to obtain an 
analytical expression for ff*(v). The calculation is outlined in Appendix B 
for the slightly more general case where the step probabilities from a "scat- 
terer" are, respectively, a and b in the horizontal and vertical directions, as 
before, but where from the "regular" sites the step probabilities are, respec- 
tively, a' and b' in the horizontal and vertical directions. (The case d]s- 

6 Strictly speaking, there is the remote possibility that some periodic arrangements  might have 
the same diffusion coefficients as in the random case. 
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cussed in Sections 3.1 and 3.2 is recovered by putting a ' =  b ' =  ~.) The result 
is 7 

fc*(v)=v[l+(a-a')K(a')] '+O(v 2) (v~O) (3.5) 

where 

2 ~ 
K'a":-~fo dO'fo dO212a'(1 (1-cOsO')-(1-c~ c o s  0-7i~ ~ - 2a:)-~ 2cos  02i] 

[ 1 ( 2a' ~,/2 1 (1-2a'~1/2] 
= 4  ~ arctan arctan \ l - 2a ' )  (1 - 2a')• \ ~ )  J 

(3.6) 

Thus the asymptotic probability r~*(v) that the walker is on a scattering 
site is, even for small v, in general different from the probability v that a site 
is a scatterer. An exception is the case a ' =  �88 = b' considered by Shuler and 
Mohanty, (4) since K(~-) = 0. The result for v close to 1 can be obtained from 
(3.5) by replacing v by 1 - v  and interchanging a and a'. Higher-order 
corrections to (3.5) can in principle be calculated from the result (B30) of 
Appendix B by cluster expansion methods of statistical mechanics. These 
corrections involve self-correlations, corresponding to repeated visits of the 
walker to the same internal state (site), and are therefore of order v 2, 
v 3, etc. 

Let us now compare these results to the situation of a periodic 
arrangement with one scatterer in a square unit cell of m 2 sites. The 
occupation probability of the scatterer is obtained in Appendix B as 

7z*(p) = p[1 + (a - a') K(a')]  - - i  (3.7) 

where p = 1/m 2 is the density of scatterers, and 

1 , K(a') = ~  {2a'[1 [1 -cos(Zzck/m)] - [1 _cos(ZTd/m)] 
k,, - - c o s ~  + (1----2a T~---c~s(2M/m) ]J 

{3.8) 

where k, l = 0, 1, 2 ..... m -  1, and the prime indicates that the term with k = 
/ = 0  is omitted. For large m, i.e., for p ~ l ,  R(a')~-K(a'), where K(a') is 
defined in (3.6) and, in analogy with (3.5), 

lr*(p)~-p[l+(a-a')K(a')] -1 (p,~ 1) (3.9) 

7 Similar expressions are obtained for the resistivity of a two-dimensional anisotropic network 
in the effective medium approximation (Ref. 16). 
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Thus for a very low density p of scatterers, the asymptotic occupation 
probabilities of the scattering sites and thus the diffusion coefficients are 
identical for periodic s and random arrangements of scatterers with iden- 
tical densities p. In view of the remarks in the previous paragraph, the same 
is true for very high density. The equality of the diffusion coefficients for 
low density of scatterers for both periodic and random arrangements is in 
agreement with the analogous Rayleigh-Maxwell result for the effective 
conductivity for a composite material of conducting disks embedded in a 
medium of a different conductivity (see Ref. 4). 

It is interesting to note that analogous results for periodic and random 
arrangements of defects were obtained by Argyrakis,/17~ who performed 
Monte Carlo simulations for a two-dimensional lattice, where a fraction p 
of the sites together with the corresponding bonds are deleted. He found a 
pronounced difference in the expected number S, of distinct sites visited 
between a periodic and random arrangement with the same fraction p of 
deleted sites. However, in the limit as p goes to zero, the random and 
periodic results for S~ were found to tend to the same values. 

4. D I S C U S S I O N  

In this paper we have studied random walks on a number of 
inhomogeneous lattices and concentrated on the question whether the 
asymptotic random walk properties (diffusion coefficients in particular) 
depend explicitly on the spatial arrangement of the inhomogeneities (scat- 
terers, impurities, etc.) or only on their density. Two distinct types of 
behavior were found. 

(i) In the case of the sparsely periodic lattice (Sections 2.1 and 2.2) 
all the distinct periodic arrangements of columns with the same density 
give the same answer for the diffusion coefficients. A simple argument 
based on the Law of large numbers was subsequently used to demonstrate 
that random arrangements of columns in the unit cell, with the same den- 
sity as the periodic arrangements, yield in the limit of an infinitely large 
unit cell diffusion coefficients identical to those of the periodic case. This 
argument is of a general nature and applies to any system where all the 
periodic arrangements with identical density of inhomogeneities give rise to 
identical values for the diffusion coefficients. 9 

8 Although we only considered the case of a square unit cell, this result also holds for a rec- 
tangular unit cell of size m • n with one scatterer, as long as both m and n are large. 

9 The procedure of going to an infinite unit cell while keeping the density of inhomogeneities 
constant corresponds, of course, to the standard statistical mechanics procedure of going to 
the thermodynamic limit. This permits one to prove or demonstrate (depending upon 
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At this point we cite a few examples from the literature where an 
analogous situation prevails. The first is the one-dimensional waiting time 
Lorentz model, already referred to in I, where the diffusion coefficient is 
identical for lattices with fixed and with random intervals between scat- 
terers for a given density of scatterers. (1s'25) 

Another example is the continuous time random walk model with 
isotropic transition probabilities but site-specific waiting time distributions, 
the Random jump rate model./19) That is, at every site fl the walker jumps 
with equal probability to one of the neighboring sites but the time between 
jumps is distributed according to waiting time distributions {O~(t)} differ- 
ing from site to site. It can easily be shown from the results in I that for a 
periodic arrangement of the sites the diffusion coefficient D associated with 
the total mean square displacement is given by (all lattice constants are 
assumed to be unity) 

D =  m 1 2"/~ (4.1) 
/~=1 

where m is the number of sites per unit cell and r~ is the mean waiting time 
at site fl, i.e., Tt~ = ~ dt ~/~(t)t. This result, which is valid in any dimension 
d, was first derived by Haus et al. ~2~ for the case of exponential waiting 
time distributions. From (4.1) it is evident that for this periodic case the 
diffusion coefficient does not depend upon the spatial arrangement of the m 
mean waiting times {~} in the unit cell. The case where the mean waiting 
time at every site of the infinite lattice is independently chosen from a ran- 
dom distribution can be handled as in Section 2.2. 

(ii) The second type of behavior was found in the brick lattice of Sec- 
tion 2.3 and the anisotropic scatterer model of Section 3. Here, different 
periodic arrangements with identical density of vertical bonds and scat- 
terers, respectively, do not yield the same answer for the diffusion coef- 
ficients. Such lattices are prototypes of a wide class of multistate lattices 
where macroscopic transport properties, such as diffusion coefficients, for 
random arrangements of inequivalent sites differ from those obtained for 
periodic arrangements with the same density. Another example in this class 
is the Random barrier model t19) in dimension d>~2.1~ Here one assigns 

whether the author/reader is a mathematician or a physicist) various properties of infinite 
systems. The validity of statistical mechanics in the description of physical systems depends 
on the identity of the results for large, finite systems with those of the corresponding infinite 
system. Our results, although based on going to the limit of infinite systems, should thus 
apply to the large, finite systems which are the substrates of physics and chemistry. 

lOOnly in the one-dimensional case is the diffusion coefficient independent of 
arrangement/21 23) 



Asymptotic Properties of Multistate Random Walks. II 599  

transition rates at random to the bonds of a lattice, independent of all the 
other bonds, such that the rate W~ associated with the bond connecting 
sites i and j is symmetric, i.e., Wo.= Wji. The percolation problem is 
obtained if any of the rates takes the value zero with a positive 
probability. (~5) For some rigorous results in the case of positive but boun- 
ded rates, see also Ref. 24. 

From our results it is clear that case (i) above is the exception rather 
than the rule. For the lattices in class (ii) one has to go to very large unit 
cells, which are macroscopically homogeneous (e.g., realizations of a 
stationary ergodic or random distribution of inequivalent sites), before the 
random walk properties can become independent of the particular 
arrangement of the sites. Additional conditions which have to be imposed 
for this so-called "self-averaging" to happen were discussed by Anshelevich 
and Vologodskii for one-dimensional lattices. (26/ Similar conditions for 
higher-dimensional lattices do not yet seem to be known. Left open is the 
question as to a general characterization of the types of inequivalent sites 
(i.e., anisotropic scatterers, partial traps, etc.) which give rise to (i) and (ii), 
respectively, It would obviously be useful to have an a priori knowledge of 
this so that one would know under what conditions asymptotic random 
walk properties on randomly inhomogeneous lattices can be calculated via 
periodic inhomogeneous lattices. 

A final remark concerns the usefulness of the approach developed in I 
and this paper for the calculation of random walk properties such as dif- 
fusion coefficients in a random environment. It is clear that in the majority 
of cases an analytical calculation of these properties is still not feasible. 
However, based on the results of I and this paper, the following numerical 
procedure suggests itself, which should be more efficient that the usual 
Monte Carlo simulations. Construct a finite unit cell with randomly chosen 
sites/bonds and calculate numerically and exactly the diffusion coefficients 
by the formulas derived in I. This requires only matrix computations. Then 
add one site/bond to the lattice, chosen at random from the probability 
distribution of sites/bonds. Again compute the diffusion coefficients and 
repeat this procedure until convergence is observed. A similar procedure 
has recently been developed to calculate the resistance of a random 
network. (27) 

Noto  Added  in Proof .  Some of the results of Part I were obtained 
independently by A. Kr~imli and D. Sz/tsz, Z. Wahrscheinlichkeitstheorie 
verw. Gebiete 52:309 319 (1980). We thank the referee for bringing this 
reference to our attention. 
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A P P E N D I X  A 

In this appendix, we derive Eqs. (2.19) and (2.20). The unit cell of the 
deformed lattice is indicated in Fig. 4, which contains three lattice con- 
stants a, b, c and two angles ~ and /3, which are interrelated. First of all, 
from the geometry one deduces that 

sin ~ = K b (A 1 ) 
sin/3 a 

where 
m - 1  

K - (A2) 
k - ( m - 1 )  

Secondly, from the requirement that the walk be locally unbiased in all 
directions, we obtain 

a cos x = b cos fl (A3) 

a sin ~ + b sin fi = c (A4) 

The occupation probabilities of the sites are the same as for the original 
lattice, Eq. (2.14). (9) The single-step variances are 

(x2)~  = ~a2 cos2 c~, (y2)~=~b2sin2fl(l+K+KZ), 
(A5a) 

fl= l,m,k + l,k +m 
( X 2 ) f l  = a2 c o s  2 ~, ( y 2 ) f l  = K2b 2 s in  2 fi, 

(A5b) 
f l = m + l  ..... k; k+m+l,...,2k 

(X2)f l= a2 COS2 ~, {y2 )e  = b2 sin2/3, 
(ASc) 

fl = 2,..., m -  1; k+2,...,k+m-1 

where we have used (A1)-(A4). By using (2.14) and (A5), we find 

k 
2 D ~ = ~  (y2)~=a2cosZ~k+ 1 (A6) 

fl 
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and 

1 . - .b2s in2 f i [2 ( l+K+K2)+(k -m)K2+m-2]  (A7) t 

D_~=k+ 1 

The off-diagonal elements of D' are zero. From the geometry of the original 
lattice we find, 

and similarly for the deformed lattice, 

ka cos ~ 0 ) 
A' = (A9) 

0 2b sin fi(m + K) 

From (2.18) we then obtain by using (A6) (A9), 

and 

k (A10) 2D~-k +  1 

! ! 
= (Al l )  2Dy k+ 1 7 

where 

(m+ K) 2 ( I + K) 2 + Kk 
- ( A 1 2 )  

7 = 2 K + K 2 ( k - m + 2 ) + m  ( I + K )  2 

Inserting (A2) in (AI2), we arrive at the desired results (2.19) and (2.20). 

A P P E N D I X  B 

Here we derive the low-density results (3.5)-(3.8) for two-dimensional 
lattices with anisotropic scatterers. We start with the random case. The 
square unit cell consists of m x m sites, labeled by (0"), where i indicates the 
row on which the site is located and j the column (i, j = 0, ! ..... m -  1). The 
elements (0l T[iV')  of the transition matrix T describing the embedded 
Markov Chain on the m 2 internal states, are given by 11 

(01 Tli•') =~i7,{6c,i+1 + ~c,i-,} c~j,s, 

+ (~-~,,;)6,,,,{6;,j+, + 6j, j_~} (B!) 

n The symbol C]Zj denotes the Kronecker fi function. 
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where 

and 

~i7' = a' + (a - a') c~iT, (B2) 

10 with probability v (B3) 
~c; = with probability 1 - v 

That is, with probability v the transition probabilities are a and �89  a in the 
horizontal and vertical direction, respectively, ("scatterers"), and with 
probability 1 -  v the transition probabilities are a' and � 8 9  ("regular 
sites"). The quantity to be determined is the occupation probability n*(v) 
of the infinite random lattice�9 If we denote the components of the right 
eigenvector n of (B1) belonging to the eigenvalue Z o = l  by ~ij 
(0=0 ,  1 ..... m - l ) ,  then the average occupation probability of the scat- 
terers for finite m is given by 

n*(m, v) = ~ e0.rc0. (B4) 
i , j  

where the __ bars denote averages over the random variables c~. The desired 
quantity n*(v) is then finally obtained by taking the limit of an infinite unit 
cell, 12 

rt*(V)= lim 7r*(m, v) (B5) 
m ~ o o  

The eigenvector n of (B1) will now be determined by perturbation 
theory in powers of v, i.e., we assume that v ~ 1. The unperturbed matrix T o 
is defined by its matrix elements, 

(zjl To [ i 7 ' )=a ' {a , ' j + l  + 6c.~_1} 6/,J' 

+ {�89 a') 6i, c { ~ j ' , j +  1 + t~j',j--1 } (B6) 

or, by introducing Kronecker products, indicated by the symbol | 

T o - a ' R  @ 1 + ( �89 a')l |  (B7) 

where the m-dimensional square matrix R is given by (1 1) 
1 1 

R = 1 " ' .  (B8) 
, - 

' . . .  1 
1 1 

~2 For the validity of this procedure, see Section 2.2. 
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and 1 is the m-dimensional unit matrix. The perturbation T~ is defined by 

(ijl r l l i T ' ) = ~ , 7 ( a - a ' ) [ { ~ c , i ~ ,  +g~i,,, 1} g~j,j' 

- 6,,,,{c~j,a+, + aj,o._, }] (B9) 

The eigenvatue equation to be solved is 

(To + eT,)= =~ (B10) 

where we have inserted the parameter 8 to keep track of the orders of T1. It 
is convenient to diagonalize T o first, by introducing the Fourier matrix F, 
with components 

Fiy,=m-~/2z i7' (i', j '  = 0, 1,..., m -  1) (Bll)  

where 

z = e x p ( ~  j )  (BI2) 

and the property that F 1 = F*. Equation (B10) is now transformed to the 
equivalent equation 

(Mo+eM1)x=x (B13) 

where 

and 

x =  (F*| F*)~ (B14) 

Mo=(F*@F*)To(F@F)=a'A@I + ( 1 - a ' ) l @ A  (B15) 2 

M, =(F*|  F*)T,(F@ F) (Bl6) 

The matrix A = F*RF in (Bl5) is diagonal with elements 

2 ~ = 2 c o s ( ~  j )  ( j = 0 , 1 , . . . , m - 1 )  (B17) 

The matrix elements of Mo and M1 are 

(01Mo l iT)  = ,~,,,ajj, E a';~, + (�89 - a') 2j] (B18) 

and 

(0"1M~ 1i7') =~-7 ( a - a ' ) { 2 , - 2 j }  r j, (B19) 
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where 

Roerd ink and Shuler  

and thus 

The solution of (B13) is written as a power series in e, 

X=Xo+~X~+g2x2+"" 

The unperturbed solution, properly normalized, is easily found to be 

(Xo) ~ = 1 5;,o 6;,o (B21) 
m 

The complete solution x can now be written 

x = -- (B22) 
m 

where the (m 2 -  1)-dimensional vector 2 is of O(e): 

2 = g'~l ~- ~222 -}- " ' "  (B23) 

The coefficient of e" obeys the equation [T is the unit matrix of dimension 
( m  2 -  1 ) ]  

(217/o- ]')2n + Ml.~,, 1=0 (n~>2) (B24) 

where the matrices Mo and M1 are obtained from Mo and M~ by deleting 
the first row and first column. The solution of (B24) is 

2n = [ - - ( J ~ O - - T  ) 1 ] ~ l ] n - -  1 )'C 1 (n>~2) (B25) 

2 =  ~ e " [ - ( 3 ~ o - ] ' )  -1 37Ii]" 12, (B26) 
n = l  

The vector x~ obeys 

( M o -  1) x 1+ Mix o=0  (B27) 

from which, by using (B18) and (B21), one obtains 

[ ( 2 1 ) o = -  a'2;+ - a '  2 j - 1  -~7(a-a')(2;-; t;)~ o (B28) 

o~;,j = T~ (z*);~(z*) ~; ~ ;  (B2o)  
k,/ 
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Using (B14), (Bl l ) ,  and (B22), we can write the average occupation 
probability (B4) as 

. . . . . .  
7 ;  = 1_ E Z ~,J~" ~" - [a,, 06;0 + (~ - a,, oa;,o)0Z),~,] 

mi-)- i~,/, m ' ' 

1 
= V + ~n 2 E E '  ~ijzii'zjJ'(x)i'J ' (B29) 

iJ i'j' 

where we have used that ~ =  v, and where the prime on the summation 
sign indicates that the term with i ' = 0 ,  j ' = 0  has to be omitted. From 
(B18)-(B20), (B26), and (B28), we have (putting e = 1), 

n = l  ij kill knln/kk'll [ 

X zik[zJl'lz kl(kl k2)z / l (f l  l '2) ' ' ' z--kn l(k; '  l--k'n)z--ln l([n-l--fn) 

, _ , . . .~k ,17 ] X Z knknz lnlno~ijO~klll (B30) 

where 

[- ,) [1 ) l - ~ ( a - a ' )  ~,/--La, ~i+k-~--a' Aj--1 m2 (2i-2j). (B31) 

Since we cannot evaluate (B30) exactly, we confine ourselves here to all 
terms in the right-hand side of (B30) which are linear in v. These are the 
terms where i=kl . . . .  =k,,  j= l~=. . .  = l , ,  for 7 } = ~ 0 = v .  All other 
terms are of order v 2. 

Summing all these terms linear in v, we obtain 

1 y '  y '  . 
= ~ ~ E " ~k~,', " ~;k;t:+ O(V ~) 

. = i  o kil', kX, 

I ?' + ' 
= v  1 y 7k, + O(V 2) (B32) 

k,l 

If we finally take the limit m ~ 0% we get 

Y,' ?kl ~ (a -  a') K(a') (B33) 
k,l 

where K(a') is given by (3.6) and (B32) reduces to the result (3.5) as had to 
be shown. 

822/41,'3-4-17 
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In  the  case  o f  a n o n r a n d o m  pe r iod i c  la t t ice  wi th  one  sca t t e re r  at  the  

o r ig in  (0, 0)  of  the  uni t  cell, we can  r e p e a t  the  s a m e  d e r i v a t i o n  as above ,  

bu t  n o w  wi th  

{10 if (tj) = (0, 0)  (B34)  
7ij = otherwise 

and one arrives at the exact result [ ]1 
~* = ~--~ 1 + Y,' ~kt 

k,l 

which  is (3.7). 

(B35) 
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